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Distributionally Robust State Estimation for Linear
Systems Subject to Uncertainty and Outlier
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Abstract—Parameter uncertainties and measurement outliers
unavoidably exist in a real linear system. Such uncertainties and
outliers make the true joint state-measurement distributions (in-
duced by the true system model) deviate from the nominal ones
(induced by the nominal system model) so that the performance
of the optimal state estimator designed for the nominal model
becomes unsatisfactory or even unacceptable in practice. The
challenges are to quantitatively describe the uncertainties in the
model and the outliers in the measurements, and then robustify
the estimator in a right way. This article studies a distributionally
robust state estimation framework for linear systems subject to
parameter uncertainties and measurement outliers. It utilizes a
family of distributions near the nominal one to implicitly describe
the uncertainties and outliers, and the robust state estimation in
the worst case is made over the least-favorable distribution. The
advantages of the presented framework include: 1) it only uses a few
scalars to parameterize the method and does not require the struc-
tural information of uncertainties; 2) it generalizes several classical
filters (e.g., the fading Kalman filter, risk-sensitive Kalman filter,
relative-entropy Kalman filter, outlier-insensitive Kalman filters)
into a unified framework. We show that the distributionally robust
state estimation problem can be reformulated into a linear semi-
definite program and in some special cases it can be analytically
solved. Comprehensive comparisons with existing state estimation
frameworks that are insensitive to parameter uncertainties and
measurement outliers are also conducted.

Index Terms—Distributionally robust, state estimation, linear
system, parameter uncertainty, measurement outlier, semi-definite
programming.

I. INTRODUCTION

S TATE estimation for linear systems is an important and
active research topic in many fields such as target tracking,

power systems, geodesy, control and automation (e.g., robotics),
and astronautics (e.g., satellite attitude determination). When the
noises are Gaussian, and the system matrices and the statistical
properties (i.e., mean and covariance) of the noises are exactly
known, the renowned Kalman filter offers the optimal estimate
of the state given the measurement sequence in the sense of
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minimum mean square error [1] and unbiased minimum vari-
ance [2]. In most applications, however, there are uncertainties
in the parameters (i.e., the system matrices and the statistical
properties of the noises) of state transition and state observation
models. The uncertainties might significantly deteriorate the
performance of the canonical Kalman filter [3], or even cause
divergence [2], [4], when the nominal values of the parameters
deviate from the true ones. Even worse, the Kalman filter is
sensitive to possible outliers in the measurements. There is a
large body of literature on coping with uncertainties in the
parameters and outliers in the measurements, leading to two
streams of research.

The first stream focuses on parameter uncertainties in state
estimation of linear systems. The earliest solutions include the
fading (a.k.a. fading-memory) Kalman filter [4], [5], the finite
horizon memory filters [6, Section V] especially the UFIR
filter [7], the risk-sensitive (a.k.a. exponential-cost) Kalman
filter [6, Section IV], [8], the set-valued Kalman filter [9], theH∞
filter [6], [10], the adaptive Kalman filter [11]–[14], and their
extensions. Comprehensive reviews and comparisons of these
methods can be found in [5], [7], [12], [15], [16]. Later solutions
contain the multiple-model methods which handle the case when
the system modes are assumed to be multiple [17], [18], and the
unknown-input filters designed for systems that have uncertain
inputs [19]–[22]. Later on, robust filters that are insensitive to pa-
rameter uncertainties are introduced. They try to minimize/limit
the worst-case estimation error and the uncertainties are mod-
elled in different ways. Remarkable frameworks include the
Sayed’s norm-constrained filter [16], the stochastic-parameter
filter [23]–[25], the relative-entropy Kalman filter [26], the
τ -divergence Kalman filter [27], the Wasserstein Kalman fil-
ter [28], and the moments-based distributionally robust state
estimator [29].

The second stream of research deals with outlier-insensitive
state estimation. The earliest solution is the Gaussian-sum
Kalman filter which approximates non-Gaussian noise distri-
bution by a Gaussian sum [3], [30]. In order to lower the
computation burden, two categories of methods are introduced
afterwards. The first category uses heavy-tailed distributions
for the noises which are inherently outlier-aware [31]–[33].
The second category contains the M-estimation-based Kalman
filters [34]–[37]. They are designed to identify outliers and then
take actions to remove/attenuate them, by leveraging various
influence functions [38], [39]. A notable extension for M-
estimation-based Kalman filtering is introduced in [40], which
jointly estimates an unknown-input existing in both the system
dynamics and the measurement dynamics.
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However, up to date, there does not exist a robust state
estimation method that is able to address both parameter uncer-
tainties and measurement outliers. Besides, a unified viewpoint
to understand the various existing methods is lacking. Therefore,
in this article,

1) We propose a distributionally robust state estimation
framework for linear systems subject to parameter un-
certainties and measurement outliers. It uses a family of
distributions to describe the parameter uncertainties and
measurement outliers, and the robust state estimation is
made over the least-favorable distribution.

2) We show that the proposed framework generalizes several
existing estimation methodologies, including the fading
Kalman filter, the Student’s t Kalman filter, the risk-
sensitive Kalman filter, the M-estimation-based Kalman
filters, the relative-entropy Kalman filter, the τ -divergence
Kalman filter, and the Wasserstein Kalman filter.

3) We show that the proposed distributionally robust state
estimation problem can be reformulated into a linear
semi-definite program and in some special cases it can
be analytically (i.e., efficiently) solved.

4) Comprehensive comparisons and discussions on the men-
tioned state-of-the-art frameworks will be made in Sec-
tion VI, by comparing with the newly proposed distribu-
tionally robust estimator.

Notations. Rd denotes the d-dimensional Euclidean space.
EP [·] denotes the expectation operator of a random vari-
able/vector/matrix with respect to the distribution P (the sub-
script P will be dropped when there is no ambiguity). Let
Nd(μ,Σ) define a d-dimensional Gaussian distribution with
mean vector μ and covariance matrix Σ, and Dd(μ,Σ) de-
note any generic d-dimensional distribution. Let Y k denote
the measurement sequence up to and including time k, i.e,
Y k := {y1,y2, . . . ,yk}. Let I and 0 denote an identity and
a null matrix with appropriate dimensions, respectively. We use
MT to denote the transpose of the matrix M , and Tr[M ] its
trace when M is square. We use Px,···(x, · · · ) to denote the
joint/conditional/marginal distribution of {x, · · · }. Whenever
no confusion is caused, we drop the subscript of P and write it as
P (x, · · · ). Let Sd denote the set of all d-dimensional symmetric
matrices in Rd×d, and S

d
+ (resp. S

d
++) of all d-dimensional

symmetric positive semi-definite (resp. positive definite) ma-
trices in S

d. If A,B ∈ S
d, A � B (resp. A � B) indicates

that A−B ∈ S
d
+ (resp. A−B ∈ S

d
++). If S ∈ S

d
+, let S1/2

be the square root of S (i.e., S1/2S1/2 = S). To avoid notation
clutter, an ellipsis in a bracket means a copy of the content in
the immediately previous bracket (e.g., [E ][· · · ] := [E ][E ] when
an expression E is long).

II. PRELIMINARIES ON DISTRIBUTIONAL ROBUSTNESS

The original concept of distributional robustness stemmed
from the statistical game theory (recall the mixed strategy) [41],
the inventory problem [42], and the Huber’s outlier-insensitive
robust statistics [43]. It is now known for distributionally robust
optimization and popular in operations research [44], machine
learning [45], [46], and systems control [47]. Let x ∈ X denote
the decision vector and ξ ∈ Ξ the random parameter vector
associated with the optimization problem infx∈X EPξ

[f(x, ξ)]

where f(·, ·) is the objective function. In practice, however, we
do not exactly know the true distribution Pξ of ξ. This motivates
us to assume that the true distribution Pξ lies in a family of
distributions F and find the worst-case robust optimality, i.e.,

inf
x∈X

sup
Pξ∈F

EPξ
[f(x, ξ)], (1)

where F is called the ambiguity set, given as

F =

⎧⎨
⎩Pξ

∣∣∣∣∣∣
ξ ∼ Pξ

Pξ(ξ ∈ Ξ) = 1
other requirements

⎫⎬
⎭ .

The said “other requirements” describes the relation between
the ambiguity set and the nominal distribution P̄ξ. Typically, the
ambiguity set is constructed as a ball centered at the nominal
distribution, e.g., under the Wasserstein distance [48]

FW =

⎧⎨
⎩Pξ

∣∣∣∣∣∣
ξ ∼ Pξ

Pξ(ξ ∈ Ξ) = 1
W(Pξ, P̄ξ) ≤ θ

⎫⎬
⎭ , (2)

where W(·, ·) defines the Wasserstein distance. Intuitively, al-
though we do not know the true distribution, we assume that the
true governing distribution is not far away from the nominal one.
The radius θ of the ball adjusts our trust level towards the nom-
inal distribution. Other possible construction methods include
the Kullback-Leibler divergence [49], the τ -divergence [27],
the φ-divergence [49] (a.k.a. f -divergence), the moment-based
ambiguity set [50], etc.

If x∗ and P ∗ξ solve the distributionally robust optimization
problem (1), we term x∗ as the worst-case robust solution and
P ∗ξ as the least-favorable (a.k.a. worst-case) distribution.

III. PROBLEM FORMULATION

We are concerned with estimating the hidden state vector xk

of a linear Markov system [2], [51], [52]{
xk = F k−1xk−1 +Gk−1wk−1,
yk =Hkxk + vk,

(3)

where k is the discrete time index; xk ∈ Rn is the state vector;
yk ∈ Rm is the measurement vector; wk−1 ∈ Rp, vk ∈ Rm

are the process noise and measurement noise, respectively.
Typically, the linear system (3) is assumed to have the fol-
lowing properties [2], [51], [52]: 1) For every k, xk, yk, wk,
and vk have finite second moments; 2) x0 ∼ Nn(x̄0,M0),
wk ∼ Np(μ

w
k ,Qk), and vk ∼ Nm(μv

k ,Rk). Besides,μw
k , and

μv
k are exactly known and typically zero-valued; 3) For every

j 	= k, wk and x0 are uncorrelated, so are vk and x0, wk and
wj , and vk and vj . For every k, j, vk andwj are uncorrelated;
4) Qk, Rk, F k−1, Gk−1, and Hk are exactly known and have
finite matrix norms.

The nominal system (3) defines two discrete time stochastic
processes {xk} and {yk}, k = 1, 2, · · · . Let HY k

denote the
collection of all possible linear combinations of {1,Y k} and
H′Y k

denote the collection of all second-moment-finite Borel
measurable functions of {1,Y k}. Suppose the nominal joint
state-measurement distribution defined by the nominal system
model (3) is P̄ (xk,Y k). We would like to solve the following
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optimization problem

min
φ(·)∈H′Y k

EP̄(xk,Y k)
[xk − φ(Y k)][xk − φ(Y k)]

T , (4)

where φ(·) is called an optimal estimator. The optimal estimate
of xk in this minimum mean square error sense is E(xk|Y k) ∈
H′Y k

. In particular, if P̄ (xk,Y k) is jointly Gaussian,E(xk|Y k)
has a linear form, i.e., E(xk|Y k) ∈ HY k

. Nice properties (e.g.,
linearity, Gaussianity) of the nominal system (3) produce a
beautiful solution to (4), i.e., the Kalman filter. However, in
general, problem (4) is not always easy to solve if the involved
distribution P̄ (xk,Y k) is not Gaussian [53].

Remark 1: The objective in (4) is a positive semi-definite
matrix. In fact, minimizing a matrix objective is equivalent
to minimizing its trace [54], [55]. Note that minX∈X X and
minX∈X Tr[X] over a convex and compact matrix set X have
the same matrix-valued solution X∗ because the trace operator
is monotonically increasing. �

If the underlying system dynamics deviates from the nom-
inal model (3), the true joint state-measurement distribu-
tion P (xk,Y k) will more or less diverge from the nominal
P̄ (xk,Y k). In this scenario, we aim to find a robust state
estimation solution that is insensitive to the deviation. Inspired
by the distributionally robust optimization theory, we can write
the distributionally robust counterpart of (4) as

min
φ(·)∈H′Y k

max
P(xk,Y k)∈F

EP(xk,Y k)[xk − φ(Y k)][xk − φ(Y k)]
T ,

(5)
where F is the associated ambiguity set constructed around the
nominal distribution P̄ (xk,Y k). This worst-case optimization
problem can be treated as a zero-sum statistical game [41] where
the two adversarial players are the statistician who chooses the
optimal estimator and the nature that chooses the uncertain,
hostile distribution (i.e., one tries to lower the cost but the other
to improve).

Nevertheless, directly solving the min-max problem (5) is
doubtful because we prefer a recursive-type solution. Note that
the optimal estimator operates along the discrete time in a
recursive way [54] because state estimation is an online (i.e.,
time-series) problem. This also helps to reduce the calculation
complexity at each time step. Thus, we instead try to solve a
time-incremental [26] (i.e., one-time-step) alternative problem

min
φ(·)∈H′yk

max
P(xk,yk |Y k−1)∈F′

EP(·,·|·)[xk − φ(yk)][xk − φ(yk)]
T ,

(6)
where the new ambiguity set F′ is constructed around the
nominal conditional joint state-measurement distribution given
the previous measurement sequence P̄ (xk,yk|Y k−1). Note that
in (6), the space of φ(·) is only defined by yk instead of Y k. In
order to solve (6), we need to: 1) design proper forms of the asso-
ciated ambiguity set F′ so that both the parameter uncertainties
and measurement outliers can be taken into consideration, and
2) find the explicit optimization equivalent(s) of (6) so that it can
be efficiently solved.

Therefore, we are inspired to first study a distributionally
robust Bayesian estimation problem

min
φ(·)∈H′y

max
P(x,y)∈F′′

EP(·,·)[x− φ(y)][x− φ(y)]T (7)

subject to the nominal prior state distribution P̄ (x), the nominal
conditional measurement distribution P̄ (y|x), a properly con-
structed ambiguity setF′′, and the linear measurement equation

y =Hx+ v, (8)

where x,y,v are second-moment-finite with appropriate di-
mensions and distributions. The subscript k (i.e., discrete time
index) is dropped to avoid notation clutter. Then, by identifying
the joint distribution of (xk,yk) conditioned on Y k−1, we can
solve (6).

In order to make the problem (7) tractable, we assume that
the nominal P̄x and P̄v are Gaussian. In other words, no matter
what the true distributions Px and Pv are, we use Gaussian dis-
tributions to approximate them. The Gaussian approximation is
popular in state estimation community, especially for nonlinear
systems. For instance, recall the cubature Kalman filter [56],
the unscented Kalman filter [57], etc. Besides, the Gaussian
distribution has the following properties, which adapt into our
worst-case robust perspective.

1) The Gaussian distribution admits maximum entropy (i.e.,
maximum degree of indeterminacy) among all distri-
butions with given/fixed first- and second-order mo-
ments [58].

2) Concerning a linear measurement system y =Hx+ v,
if the state x is Gaussian, then among all noise distri-
butions with bounded variance for v, the Gaussian mini-
mizes the mutual information between the state x and the
measurement y. Namely, the Gaussian noise makes the
measurement least informative to estimate the state [53],
[59].

3) Concerning the linear measurement system above, if the
noise v is Gaussian, then among all state distributions
with bounded variance for x, the Gaussian maximizes the
minimum mean square error. Namely, the Gaussian state
is most difficult to estimate [53], [60].

The third reason to make the Gaussianity assumption is that
the Wasserstein metric and the Kullback–Leibler divergence for
Gaussian distributions admit closed-form expressions.

IV. DISTRIBUTIONALLY ROBUST BAYESIAN ESTIMATION

With linear measurement relation (8), the joint state-
measurement distribution P (x,y) can be determined
by (specifically, linearly shifted from) P (x,v) which
has marginals P (x) and P (v). In such a situation, it is
reasonable and common to assume that the state x is
independent of the measurement noise v. As a result, we
have Px,y(x,y) = Px,v(x,y −Hx) = Py|x(y|x)Px(x) =
Pv|x(y −Hx|x)Px(x) = Pv(y −Hx)Px(x). Therefore,
Py|x(y|x) = Pv(y −Hx).

To solve the primal problem (7), we are required to identify the
least-favorable distribution from the ambiguity setF′′. However,
it depends on the specific choice of the estimatorφ(·). Therefore,
we can alternatively try to solve the dual problem of (7) first,
i.e.,

max
P(x,y)∈F′′

min
φ(·)∈H′y

EP(·,·)[x− φ(y)][x− φ(y)]T . (9)

However, the dual problem (9) and the primal problem (7) are
not guaranteed to be equivalent. In general, by the weak duality,
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we have maxP(x,y)∈F′′ minφ(·)∈H′y EP(·,·)[x− φ(y)][x−
φ(y)]T � minφ(·)∈H′y maxP(x,y)∈F′′ EP(·,·)[x− φ(y)][x−
φ(y)]T . The equality stands only when the strong duality holds
which is not always the case. The dual problem is easier to solve
because for every P (x,y) ∈ F′′, we can find the associated
optimal estimator. We first study the optimal estimator for the
nominal case.

Theorem 1: Suppose x ∼ Nn(x̄,M) nominally, x is in-
dependent of v, all involved densities exist, and all involved
integration and differentiation are interchangeable (i.e., densi-
ties are twice continuously differentiable). Let s := y −Hx̄
denote the innovation vector, S the associated covariance, and
μ := S−1/2s the diagonalized and normalized innovation. Then
for any possible nominal joint state-measurement distribution
P̄ (x,y), the optimal estimate x̂ of x, i.e., E(x|y), is

x̂ = x̄+MHTS−1/2
[
− d

dμ
ln p(μ)

]
, (10)

and the conditional covariance of the estimation error given y,
i.e., P x|y := Ex|y(x̂− x)(x̂− x)T , is

P x|y =M −MHTS−1/2
[
− d

dμ
ln p(μ)

]
[· · · ]TS−1/2HM ,

(11)
where

p(μ) = pμ(μ) = py(S
1/2μ+Hx̄) · det(S1/2) (12)

is the density of μ, py(·) is the density of y, and det(·) denotes
the determinant of a matrix.

Proof: See Appendix A. �
Theorem 1 reveals the benefit of the Gaussianity assumption

of P̄x. Specifically, without the Gaussianity assumption, we
cannot have the closed form of x̂ as in (10).

Corollary 1: With the posterior estimate x̂, the posterior
estimation error covariance is given by P := EyP x|y and

P =M −MHTS−1/2E
[
− d2

dμμT
ln p(μ)

]
S−1/2HM .

(13)
Proof: See Appendix B. �
From μ = S−1/2(y −Hx̄) = S−1/2[H(x− x̄) + v], we

know that Eμ = 0 and EμμT = I . Thus, if x and v were all
normally distributed,pμ(·)would be standard Gaussian because
the independence between x and v has already been assumed.
Specifically, for every i 	= j, Eμi = Eμj = 0, Eμ2

i = Eμ2
j = 1,

and Eμiμj = 0. Therefore, we have

E

[
− d2

dμμT
ln p(μ)

]
= I · E

[
− d2

dμ2
ln p(μ)

]
. (14)

Note that the entry-wise pμ(·) is different from the joint pμ(·)
and we have p(μ) =

∏
i p(μi). For a nominal Gaussian pμ(·),

we identify that − d
dμ ln p(μ) is the score function (i.e., maxi-

mum likelihood estimator of the mean; see also Appendix C)
of the distribution pμ(·) and E[− d2

dμ2 ln p(μ)] the associated
Fisher information (whose reciprocal gives the lower bound
of the asymptotic variance obtainable by the mean maximum
likelihood estimator). Equation (14) is attractive since it allows
us to only study a univariate problem rather than a multivariate

one. This motivated us to study the normalized and diagnalized
innovation μ instead of s. Hence, (13) can be simplified to

P =M −MHTS−1HM · E
[
− d2

dμ2
ln p(μ)

]
. (15)

By the results in Corollary 1, we can find the explicit and
tractable reformulation of the dual problem (9).

Corollary 2: Suppose the true distribution of x is
Nn(cx,Σx) [cf. the nominal Nn(x̄,M) in Theorem 1]. The
dual problem (9) can be reformulated as

max
P(x,y)∈F′′

P , (16)

where P (x,y) is a possible joint distribution of (x,y),

P = Σx −ΣxH
TS−1HΣx · E

[
− d2

dμ2
ln p(μ)

]
, (17)

and S is the covariance matrix of s := y −Hcx.
Proof: This is immediate from Theorem 1, Corollary 1, and

(15). In this case, x̂ = cx +ΣxH
TS−1/2[− d

dμ ln p(μ)]

and μ := S−1/2(y −Hcx). Since E[− d
dμ ln p(μ)] =

− ∫
[p(μ)]−1 dp(μ)

dμ p(μ)dμ = − ∫ dp(μ)
dμ dμ = 0, we have

Ex̂ = cx = Ex, implying that x̂ is an unbiased estimate so
that the minimum mean square error matrix coincides with the
minimum error covariance matrix. �

To explicitly solve (16), we need to define the ambiguity set
F′′. The prior state distribution is Gaussian as argued. We can
construct the ambiguity set for P (x) as

Fx =

⎧⎪⎨
⎪⎩Px

∣∣∣∣∣∣∣
x ∼ Px

Px = Nn(cx,Σx)
Px(x ∈ Rn) = 1
Δ(Px, P̄x) ≤ θ

⎫⎪⎬
⎪⎭ .

where P̄x is the nominal Gaussian distribution of x [i.e.,
Nn(x̄,M) in Theorem 1], Δ(·, ·) is a statistical metric (e.g.,
Wasserstein metric) or divergence (e.g., Kullback–Leibler di-
vergence), and θ ∈ R+ is the radius to control the scale and
conservativeness of the set. The larger the θ, the more conser-
vative the robust estimation is. Specially, the ambiguity set for
P (x) could be one of the follows.

1) Kullback–Leibler divergence (KL divergence).

Fx =

⎧⎪⎨
⎪⎩Px

∣∣∣∣∣∣∣
x ∼ Px

Px = Nn(cx,Σx)
Px(x ∈ Rn) = 1
KL(Px‖P̄x) ≤ θx

⎫⎪⎬
⎪⎭ , (18)

where KL(·‖·) denotes the KL divergence and under
Gaussianity assumption, KL(Px‖P̄x) =

1
2 [‖cx −

x̄‖2M−1 +Tr[M−1Σx − I]− ln det (M−1Σx)] [26].
Note that the explicit expression for any two multivariate
distributions does not always exist. Only for Gaussians,
the above equality holds. Extensions and generalizations
for the KL divergence include the τ -divergence [27], the
φ-divergence (a.k.a. f -divergence) [49], etc. They all
contain the KL divergence as a special case.
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2) Wasserstein distance.

Fx =

⎧⎪⎨
⎪⎩Px

∣∣∣∣∣∣∣
x ∼ Px

Px = Nn(cx,Σx)
Px(x ∈ Rn) = 1
W(Px, P̄x) ≤ θx

⎫⎪⎬
⎪⎭ , (19)

where W(·, ·) denotes the Wasserstein metric
and under Gaussianity assumption, the type-2
Wasserstein distance is given as W(Px, P̄x) =√
‖cx − x̄‖2 +Tr[Σx +M − 2(M

1
2ΣxM

1
2 )

1
2 ] [28],

[53]. Note also that the explicit expression for any two
multivariate distributions does not always exist. Only for
Gaussians, the above equality holds.

3) Moment-based set [50].

Fx =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Px

∣∣∣∣∣∣∣∣∣∣∣∣

x ∼ Px

Px = Nn(cx,Σx)
Px(x ∈ Rn) = 1

[E(x)− x̄]T M−1 [E(x)− x̄] ≤ θ3,x
E(x− x̄)(x− x̄)T � θ2,xM
E(x− x̄)(x− x̄)T � θ1,xM

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Px

∣∣∣∣∣∣∣∣∣∣∣∣

x ∼ Px

Px = Nn(cx,Σx)
Px(x ∈ Rn) = 1

[cx − x̄]T M−1 [cx − x̄] ≤ θ3,x
Σx + (cx − x̄)(cx − x̄)T � θ2,xM
Σx + (cx − x̄)(cx − x̄)T � θ1,xM

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

(20)
As we can see, in general, we need to use three parameters
to define a moment-based ambiguity set, θ3 ≥ 0 and θ2 ≥
1 ≥ θ1 ≥ 0.

Suppose the nominal distribution of the measurement noise
v, by the Gaussianity assumption, is P̄ (v) := Nm(0,R). The
ambiguity set for P (v) can be one of the follows.

1) Kullback–Leibler divergence (KL divergence).

Fv =

⎧⎪⎨
⎪⎩Pv

∣∣∣∣∣∣∣
v ∼ Pv

Pv = Nm(cv,Σv)
Pv(v ∈ Rm) = 1
KL(Pv‖P̄v) ≤ θv

⎫⎪⎬
⎪⎭ . (21)

2) Wasserstein distance.

Fv =

⎧⎪⎨
⎪⎩Pv

∣∣∣∣∣∣∣
v ∼ Pv

Pv = Nm(cv,Σv)
Pv(v ∈ Rm) = 1
W(Pv, P̄v) ≤ θv

⎫⎪⎬
⎪⎭ . (22)

3) Moment-based set.

Fv =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pv

∣∣∣∣∣∣∣∣∣∣∣∣

v ∼ Pv

Pv = Nm(cv,Σv)
Pv(v ∈ Rm) = 1

[cv − 0]T R−1 [cv − 0] ≤ θ3,v
Σv + (cv − 0)(cv − 0)T � θ2,vR
Σv + (cv − 0)(cv − 0)T � θ1,vR

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

(23)
The explicit expressions for KL(·‖·) and W(·, ·) are similar

to those for P (x) in (18) and (19), respectively.

Given the nominal Gaussian distributions of the state x and
the measurement noise v, the marginal distribution of the mea-
surement y (or equivalently, the innovation s and μ) is also
Gaussian, so is the joint state-measurement distribution. How-
ever, when outliers appear in the measurement y, they appear
in the normalized innovation μ (and μ) as well. That means the
true distribution of pμ(·) is likely to deviate from the nominal
Gaussian and, simultaneously, has a heavy tail. Let Φ(·) denote
the nominal standard Gaussian distribution of μ. Motivated by
the M-estimation theory for outlier attenuation/rejection [43],
we can construct the ambiguity set for p(μ) as one of the follows.

1) ε-contamination set.

Fμ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pμ

∣∣∣∣∣∣∣∣∣

μ ∼ Pμ

Pμ(μ ∈ R) = 1
supμ ‖Pμ − Φ(·)‖ ≤ ε
Pμ = (1− ε)Φ + εH
H(μ) = 1−H(−μ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (24)

Note that supμ ‖Pμ − Φ(·)‖ = supμ ‖(1− ε)Φ + εH−
Φ(·)‖ = ε · supμ ‖H− Φ(·)‖ ≤ ε (i.e., in this case the
statistical metric is instantiated as the infinity norm).
The argument also holds for the total variation metric.
Suppose z is an indicator and uniformly distributed in
the interval [0, 1]. Pμ =

∫
z P (μ, z)dz = Φ(μ)I(z≥ε) +

H(μ)I(z≤ε) = (1− ε)Φ + εH where I(·) is the indicator
function. Therefore, in (24), Pμ = (1− ε)Φ + εH means
that with probability 1− ε the measurement innovation
μ (equivalently, a measurement y) is from a nominal
Gaussian, and with probability ε it is from a contamina-
tion heavy-tailed distribution H(·) (i.e., outlier). H(μ) =
1−H(−μ) means that H(·) is symmetric about μ = 0.

2) ε-normal set.

Fμ =

⎧⎪⎨
⎪⎩Pμ

∣∣∣∣∣∣∣
μ ∼ Pμ

Pμ(μ ∈ R) = 1
supμ ‖Pμ − Φ(·)‖ ≤ ε
Pμ(μ) = 1− Pμ(−μ)

⎫⎪⎬
⎪⎭ . (25)

Clearly, the ε-normal set is larger and more general than the
ε-contamination set for the same radius ε. However, we usually
prefer the ε-contamination set because: 1) it has clearer physical
meaning than that of the ε-normal set; 2) in view of properties of
real measurement data, the least-favorable distribution in (24)
is more reasonable than that in the ε-normal set; and 3) the
distributionally robust state estimator over the ε-contamination
set is much easier to design. Other possible choice for the
structure of Fμ includes the p-value set [34] which is also a
subset of (25), etc.

Note that the distribution of the innovation μ is uniquely
determined given the distributions of the state x and measure-
ment noise v, because we have μ = S−1/2[H(x− cx) + v].
Thus, when we admit the ε-contamination/normal deviation
from the nominal Gaussian distribution of μ, we implicitly
admit that from the distribution(s) of x or v or both. Since
the ε-contamination/normal deviation studied here accounts for
measurement outliers, we argue that it is related to v and regard-
less of x. However, for simplicity in problem solving, we work
on μ instead of v although directly on v might be intuitively
more understandable. We have Highlight 1.
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Highlight 1: v suffers from two kinds of distributional un-
certainties:

1) deviations imposed on mean and covariance [see (21),
(22), and (23)];

2) deviations existing as outliers [see (24) and (25)].
However, the first one does not imply the second, and vice

versa. They independently discredit the nominal Gaussian dis-
tribution of v. �

Consequently, the dual problem (9) or (16) is equivalent to

max
P(x)∈Fx, P(v)∈Fv, P(μ)∈Fµ

P , (26)

where P is defined in (17); Fx, Fv , and Fμ can be any types of
possible ambiguity sets available above.

Theorem 2: Consider the dual problem (26). The following
statements are true.

1) Reformulations for Fx.
a) In (18), cx = x̄ always holds so that KL(Px‖P̄x) =

1
2 [Tr[M

−1Σx − I]− ln det (M−1Σx)].
b) In (19), cx = x̄ always holds so that W(Px, P̄x) =√

Tr[Σx +M − 2(M
1
2ΣxM

1
2 )

1
2 ].

c) In (20), cx = x̄ always holds so thatΣx � θ2,xM and
Σx � θ1,xM .

2) Reformulations for Fv .
a) In (21), cv = 0 always holds so that KL(Pv‖P̄v) =

1
2 [Tr[R

−1Σv − I]− ln det (R−1Σv)].
b) In (22), cv = 0 always holds so that W(Pv, P̄v) =√

Tr[Σv +R− 2(R
1
2ΣvR

1
2 )

1
2 ].

c) In (23), cv = 0 always holds so that Σv � θ2,vR and
Σv � θ1,vR.

3) The dual problem (26) is equivalent to

max
P(x)∈Fx

max
P(v)∈Fv

max
P(μ)∈Fµ

P . (27)

The order of the three maximizations does not matter.
Proof: The estimation error covariance P in (26) does not

depend on cx and cv . In order to maximize P , the larger the
feasible sets of Σx and Σv , the better. This leads to cx = x̄ and
cv = 0. Namely, the distributional uncertainty budgets θx and
θv are completely assigned to describe deviations of covariances
of Px and Pv , respectively, regardless of cx or cv . This proves
the first two claims 1) and 2). The claim 3) is standard in the
optimization community. �

Since s = y −Hcx =H(x− cx) + v, and x and v are
Gaussian and independent, the nominal value of S can be ob-
tained as S =HΣxH

T +Σv . Let iμ ∈ R+ denote the Fisher
information of p(μ); iμ := E[− d2

dμ2 ln p(μ)] ≥ 0. Comparing
with (17), P in (27) can be written as

P = Σx −ΣxH
T (HΣxH

T +Σv)
−1HΣx · iμ.

In view of the first two claims 1) and 2) in Theorem 2, we identify
that Fx is parameterized by Σx ∈ S

n
+ and Fv is parameterized

by Σv ∈ S
m
++ (due to non-singularity of S). Hence, (27) can be

equivalently given as

max
Σx

max
Σv

max
iµ
P (28)

where the feasible sets of Σx and Σv are defined by Fx and
Fv , respectively. As a result, we can solve the reformulated

dual problem (28) independently and sequentially, i.e., solving
the innermost first and the outermost last.

The following two lemmas solve the innermost sub-problem
over iμ.

Lemma 1: The functional optimization over the ε-
contamination ambiguity set

min
p(μ)

E

[
− d2

dμ2
ln p(μ)

]

s .t .

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ ∼ Pμ

p(μ) =
dPµ

dμ

Pμ(μ ∈ R) = 1
supμ ‖Pμ − Φ(·)‖ ≤ ε
Pμ = (1− ε)Φ + εH
H(μ) = 1−H(−μ)

is solved by the following least-favorable distribution

p(μ) =

⎧⎪⎨
⎪⎩

(1− ε) 1√
2π
eKμ+ 1

2K
2
, μ ≤ −K

(1− ε) 1√
2π
e−

1
2μ

2
, |μ| ≤ K

(1− ε) 1√
2π
e−Kμ+ 1

2K
2
, μ ≥ K,

(29)

where K ∈ R+ is implicitly defined by ε;
∫K

−K p(μ)dt+
2p(K)

K = 1. Furthermore, minE[− d2

dμ2 ln p(μ)] = (1− ε)[1−
2Φ(−K)].

Proof: See Appendix D. �
Lemma 2: Given 0 ≤ ε � 0.0303, the functional optimiza-

tion over the ε-normal ambiguity set

min
p(μ)

E

[
− d2

dμ2
ln p(μ)

]

s .t .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ ∼ Pμ

p(μ) =
dPµ

dμ

Pμ(μ ∈ R) = 1
supμ ‖Pμ − Φ(·)‖ ≤ ε
Pμ(μ) = 1− Pμ(−μ)

is solved by the following least-favorable distribution

p(μ) =

⎧⎪⎨
⎪⎩

1√
2π
e−

1
2a

2 · cos−2( 12ca) · cos2( 12cμ), 0 ≤ μ ≤ a
1√
2π
e−

1
2μ

2
, a ≤ μ ≤ b

1√
2π
e−

1
2 b

2 · e−bμ+b2 , μ ≥ b
(30)

and p(μ) = p(−μ), where a, b, and c are implicitly defined by
ε as

1) c tan(12ca) = a (0 ≤ ca < π),
2)

∫ a

0 p(μ)dμ =
∫ a

0 dΦ(μ)− ε,
3)

∫∞
b p(μ)dμ =

∫∞
b dΦ(μ) + ε.

Furthermore, minE

[
− d2

dμ2
ln p(μ)

]
=

c2a

cos2( 12ca)
p(a) +

2Φ(b)− 2Φ(a).
Proof: See Appendix E. �
Lemma 1 reveals that the least-favorable distribution under

the ε-contamination distributional uncertainty is Gaussian in the
middle (i.e., when |μ| ≤ K) and is Laplacian in the tails (i.e.,
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when μ ≥ K and μ ≤ −K), while Lemma 2 reveals that the
least-favorable distribution under the ε-normal distributional un-
certainty is cos2(·)-like in the middle (i.e., when−a ≤ μ ≤ a), is
Gaussian in the transitions (i.e., when a ≤ μ ≤ b and−b ≤ μ ≤
−a), and is Laplacian in the tails (i.e., when μ ≥ b and μ ≤ −b).
The Laplacian (a.k.a. exponential) tails (i.e., heavy tails) explain
outliers in measurements. We call them least-favorable distribu-
tions because they have smallest Fisher information (i.e., largest
asymptotic variance to estimate the mean) among distributions
in Fμ. Although both are theoretically sound, we usually prefer
the results in Lemma 1 because they coincide well with our
intuitions from practice that the main part of measurements are
normally distributed and only a small part of them are outliers.
However, the results in Lemma 2 become suitable when quanti-
zation noises are non-negligible (e.g., when low-bit sampler is
adopted), because quantization noise is close, but not equal, to
zero.

Remark 2: In Lemma 2, we require that ε � 0.0303 (n.b., for
three real numbers, x � z means that x ≤ y and y ≈ z). This
is a necessary condition to obtain the least-favorable distribu-
tion in (30). Otherwise, the least-favorable distribution is of a
different form; see [39, p. 85 ff.]. Usually, we do not prefer the
solution when ε � 0.0303 because the associated M-estimator
has significantly larger asymptotic variance; see [39, Exhibit
4.6]. Theoretically, only when the true proportion of outliers is
approximately smaller than 0.0303 can we use the solution in
Lemma 2. However, in practice, the solution in Lemma 2 might
not be sensitive to the true proportion of outliers: no matter
what the true proportion of outliers (of course, as long as less
than 0.5) in the true measurements, keeping ε ≡ 0.0303 in our
algorithm might not cause disasters. This observation is also true
for the solution in Lemma 1. This point will be illustrated in the
experiments in Subsection VII-D. �

After solving the innermost sub-problem of (28), we then
study the outer sub-problems.

Theorem 3: The dual problem (28) is equivalent to

max
Σx

max
Σv

Σx −ΣxH
T (HΣxH

T +Σv)
−1HΣx · imin

μ ,

(31)
where imin

μ := min iμ := minE[− d2

dμ2 ln p(μ)] is a constant de-
fined in Lemma 1 or Lemma 2, whichever is adopted. Besides,
0 ≤ imin

μ ≤ 1.
Proof: Note thatΣxH

T (HΣxH
T +Σv)

−1HΣx � 0 be-
cause Σx ∈ S

n
+ and Σv ∈ S

m
++. Hence, the non-negative and

minimal iμ maximizes P . In addition, since the standard Gaus-
sian is contained in the ε-contamination set and the ε-normal set,
imin
μ is upper bounded by the Fisher information of the standard

Gaussian which is one. �
Since we have three alternatives for Fx, three for Fv , and

two for Fμ, in principle, we need to solve the dual problem
(26) eighteen times. As demonstrations and without loss of
generality, we suppose Fx and Fv have the same type of
distributional uncertainty and study the distributionally robust
Bayesian estimation (DRBE) under Wasserstein ambiguity and
moment-based ambiguity, respectively.

Under Wasserstein ambiguities of Fx and Fv , the dual prob-
lem (31) can be explicitly written as

max
Σx

max
Σv

Σx −ΣxH
T (HΣxH

T +Σv)
−1HΣx · imin

μ ,

(32)

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
Tr

[
Σx +M − 2

(
M

1
2ΣxM

1
2

) 1
2

]
≤ θx√

Tr

[
Σv +R− 2

(
R

1
2ΣvR

1
2

) 1
2

]
≤ θv

Σx � 0
Σv � 0.

(33)

This problem is difficult to solve as: 1) the objective
is nonlinear, 2) the feasible set (33) is non-convex be-
cause the function

√· is concave and the constraint√
Tr[Σx +M − 2(M

1
2ΣxM

1
2 )

1
2 ] ≤ θx is non-convex, so is

the constraint for v. However, we can still reformulate it into a
linear semi-definite program (SDP) using some algebraic tricks.
Solving a linear SDP is basic, although still challenging, in the
optimization community.

Theorem 4: Suppose R � 0. The dual problem (32) subject
to (33) is solvable and can be reformulated as a linear SDP

max
Σx,Σv,V x,V v,U

Σx − imin
μ ·U , (34)

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
U ΣxH

T

HΣx HΣxH
T +Σv

]
� 0

Tr [Σx +M − 2V x] ≤ θ2x[
M

1
2ΣxM

1
2 V x

V x I

]
� 0

Tr [Σv +R− 2V v] ≤ θ2v[
R

1
2ΣvR

1
2 V v

V v I

]
� 0

Σx � 0,Σv � 0,V x � 0,V v � 0,U � 0.

(35)

Proof: See Appendix F. �
Under moment-based ambiguities of Fx and Fv , the dual

problem (31) can be explicitly written as

max
Σx

max
Σv

Σx −ΣxH
T (HΣxH

T +Σv)
−1HΣx · imin

μ ,

(36)
subject to ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Σx � θ2,xM
Σx � θ1,xM
Σv � θ2,vR
Σv � θ1,vR � 0
Σx � 0
Σv � 0.

(37)

This problem is relatively easier to solve than (32) because
the feasible set (37) consists of linear constraints, implying
convexity and compactness. Note thatR � 0 indicatesΣv � 0.
Therefore, it is solvable (i.e., the optimal solutions exist and are
finite).

Theorem 5: The dual problem (36) subject to (37) is analyti-
cally solved by Σx = θ2,xM and Σv = θ2,vR.

Proof: See Appendix G. �
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It is also possible to jointly use the Wasserstein metric and the
moment-based set, e.g., the Wasserstein metric for Fx and the
moment-based set for Fv . The derivations are straightforward
and we do not cover the details.

As we can see, the dual problem under the moment-based dis-
tributional uncertainties admits attractive closed-form solutions
which indicates high computational efficiency, especially for
large scale estimation problems when n and m are (extremely)
large. As for the problem under the Wasserstein metric, it re-
quires solving a SDP which, although linear and solvable, is still
computationally challenging. From the viewpoint of modelling,
using the Wasserstein metric (33) [which is equivalent to (54)
in Appendix F] or the moment-based set (37) just means that
the shapes of the feasible sets are different. Since both (54) and
(37) are convex and compact, for every Σx and Σv in (54),
there exists θ1 ∈ R+, θ2 ∈ R+ for (37) such that Σx and Σv

are contained in (37). Conversely, for every Σx and Σv in
(37), there exists θ ∈ R+ for (54) such that Σx and Σv are
contained in (54). Therefore, in practice, we are not entangled
in which type of ambiguity set we should choose. We use the
one under which the problem is easy to solve. It is this reason
that we do not study the problem under the KL divergence
ambiguity in this article. Because nonlinear functions, i.e., ln(·),
det(·), in (18) and (21) render the dual problem being a general
nonlinear SDP (without linear reformulations) and difficult to
solve. However, it is still convex and therefore solvable, since the
constraints 1

2 [Tr[M
−1Σx − I]− ln det (M−1Σx)] ≤ θx and

1
2 [Tr[R

−1Σv − I]− ln det (R−1Σv)] ≤ θv are convex. The
convexity of the constraints is straightforward to show as: 1)
Tr[·] is linear and convex; 2) both ln (·) and det (·) are concave;
3) ln (·) is monotonically increasing.

The theorem below summarizes the solution to the dual prob-
lem (9).

Theorem 6: Suppose the nominal distribution of x is P̄x =
Nn(x̄,M) and of v is P̄v = Nm(0,R),R � 0. With Gaus-
sianity assumptions for elements in the ambiguity sets Fx and
Fv , the dual problem (9) is solved by

1) Optimal Estimator.

x̂ = x̄+Σ∗xH
TS∗−1/2 ·ψ[S∗−1/2(y −Hx̄)], (38)

where S∗ :=HΣ∗xH
T +Σ∗v , ψ(μ) is entry-wise iden-

tical and for each entry

ψ(μ) =

⎧⎨
⎩
−K, μ ≤ −K
μ, |μ| ≤ K
K, μ ≥ K,

(39)

if the ε-contamination ambiguity set is used, or

ψ(μ) = −ψ(−μ) =
⎧⎨
⎩
c tan(12cμ), 0 ≤ μ ≤ a
μ, a ≤ μ ≤ b
b, μ ≥ b,

(40)

if the ε-normal ambiguity set is used; Σ∗x and Σ∗v are the
optimal solution of (34) if the Wasserstein metric is used,
or of (36) if the moment-based set is used.

2) Worst-Case Estimation Error Covariance.

P ∗ = Σ∗x −Σ∗xH
T (HΣ∗xH

T +Σ∗v)
−1HΣ∗x · imin

μ ,
(41)

where

imin
μ = (1− ε)[1− 2Φ(−K)] (42)

if the ε-contamination ambiguity set is used, or

imin
μ =

c2a

cos2( 12ca)
p(a) + 2Φ(b)− 2Φ(a) (43)

if the ε-normal ambiguity set is used. For parameters K,
a, b, and c, see Lemmas 1 and 2.

3) Least-Favorable Distributions.
i) P ∗x = Nn(c

∗
x,Σ

∗
x), where c∗x = x̄.

ii) P ∗μ is defined in (29) if the ε-contamination ambiguity
set is used, or in (30) if the ε-normal ambiguity set is
used.

iii) P ∗v is determined by the convolution of P ∗μ and P ∗x
through v∗ = S∗

1
2μ∗ −H(x∗ − x̄), where S∗ :=

HΣ∗xH
T +Σ∗v . v∗ denotes the random vector as-

sociated with P ∗v . Notations keep similar to μ∗ and
x∗.

Proof: See Appendix H. �
At last, we solve the primal distributionally robust Bayesian

estimation problem (7).
Theorem 7: Under Gaussianity assumptions for nominal dis-

tributions of x and v, the distributionally robust Bayesian esti-
mation problem (7) admits the min-max property, i.e., the strong
duality holds,

min
φ(·)∈H′y

max
P(x,y)∈F′′

V (φ,P ) = max
P(x,y)∈F′′

min
φ(·)∈H′y

V (φ,P ),

where V (φ,P ) := EP(·,·)[x− φ(y)][x− φ(y)]T . Hence, the
solutions to the dual problem (9) also solve the primal problem
(7).

Proof: See Appendix I. �
So far we have solved the distributionally robust Bayesian

estimation problem subject to parameter uncertainties and mea-
surement outliers. As a closing note, we mention that if we
were sure that there are no outliers in measurements, we would
have another modelling trick to address the distributionally
robust Bayesian estimation problem. The theorem below is an
outlier-free supplement to Theorem 6.

Theorem 8: If there are no outliers in measurements, we can
directly model Px,y (or equivalently Px,v) as a joint Gaus-
sian distribution. In this special case, the ambiguity set admits
Δ(Px,y, P̄x,y) ≤ θ, parameterized by just one scalar.Δ(·, ·) can
be any possible statistical metric or divergence (e.g., Wasserstein
metric, KL divergence, moment-based set). Ifx andy are jointly
Gaussian, the optimal estimate of x given y, i.e., E(x|y), has
an affine form. Suppose the worst-case distribution is

P ∗x,y = Nn+m

([
c∗x
c∗y

]
,

[
Σ∗xx Σ∗xy
Σ∗yx Σ∗yy

])
.

We have the distributionally robust estimate as x̂ = c∗x +
Σ∗xyΣ

∗−1
yy (y − c∗y) and the worst-case estimation error covari-

ance as P ∗ = Σ∗xx −Σ∗xyΣ
∗−1
yy Σ∗yx. Note that P ∗x,y can be

obtained in analogy to Theorem 4 if the Wasserstein metric is
used, or to Theorem 5 if the moment-based set is used.

Proof: This special case has been discussed in [29]. �
When outliers exist in measurements, we can no longer as-

sume thatx andy (or equivalentlyx andv) are jointly Gaussian.
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We have to separately discuss the ambiguity sets of Px, Pv , Pμ,
respectively. Even when there are no outliers in measurements,
separately designing uncertainty sets forx andy (or equivalently
x and v) offers us more flexibility if we have different uncertain
levels towards them, because jointly modelling admits the same
uncertain levels.

V. DISTRIBUTIONALLY ROBUST STATE ESTIMATION

With the results of distributionally robust Bayesian estimation
developed in Section IV, this section solves the state estimation
problem (6) at time k. We just need to identify the nomi-
nal conditional prior distribution of the state given the past
measurements, i.e., P̄xk |Y k−1 . In our Gaussian approximation
framework, P̄xk |Y k−1 is Gaussian.

By (3), the nominal conditional prior distribution of the state
xk given the last state xk−1 is

P̄xk |xk−1 = Nn

(
F k−1xk−1, Gk−1Qk−1GT

k−1
)
.

At time k − 1, suppose the distributionally robust poste-
rior state estimate is E(xk−1|Y k−1) := x̂k−1|k−1 and the as-
sociated estimation error covariance is P ∗k−1|k−1; the con-
ditional distribution of xk−1 given Y k−1 is Pxk−1|Y k−1 =
Nn(x̂k−1|k−1, P ∗k−1|k−1). Therefore, the nominal conditional
prior distribution of the state xk given Y k−1 is

P̄xk |Y k−1 =

∫
Rn

P̄ (xk | xk−1) P (dxk−1 | Y k−1), (44)

i.e.,

P̄ (xk | Y k−1) ∼ Nn

(
x̂k|k−1,Mk|k−1

)
, (45)

where

x̂k|k−1 = F k−1x̂k−1|k−1 (46)

and

Mk|k−1 = F k−1P ∗k−1|k−1F
T
k−1 +Gk−1Qk−1GT

k−1. (47)

The nominal distribution of the measurement noise vk is
P̄vk |Y k−1 = P̄vk

= Nm(0,Rk) because we can readily verify
that vk is independent of Y k−1.

Now it is sufficient to invoke the results in Theorem 6 to obtain
the distributionally robust state estimate x̂k|k at time k given yk.

Theorem 9: Suppose the radii of the ambiguity sets are ε ≥
0, θx,k ≥ 0, θ2,x,k ≥ 1 ≥ θ1,x,k ≥ 0, θv,k ≥ 0, θ2,v,k ≥ 1 ≥
θ1,v,k ≥ 0. At time k, with the nominal Gaussian prior condi-
tional distribution of the state P̄xk |Y k−1 ∼ Nn(x̂k|k−1,Mk|k−1)
and the nominal Gaussian distribution of the measurement noise
P̄vk

= Nm(0,Rk), the distributionally robust state estimate
x̂k|k given yk is as follows.

1) Optimal Estimator.

x̂k|k = x̂k|k−1 +Σ∗x,kH
T
kS
∗−1/2
k ·ψ[S∗−1/2k sk], (48)

where sk := yk −Hkx̂k|k−1, x̂k|k−1 = F k−1x̂k−1|k−1,
and S∗k :=HkΣ

∗
x,kH

T
k +Σ∗v,k; ψ(·), Σ∗x,k, and Σ∗v,k

are defined in Theorem 6.
2) Worst-Case Estimation Error Covariance.

P ∗k|k = Σ∗x,k −Σ∗x,kH
T
kS
∗−1
k HkΣ

∗
x,k · imin

μ , (49)

where imin
μ is defined in Theorem 6.

Algorithm 1: Distributionally Robust Estimator.

Definition: x̂k|k as the distributionally robust state
estimate; P ∗k|k as the worst-case state estimation error
covariance.

Initialize: x̂0|0, P ∗0|0, ε, all involved θ as instructed in
Theorem 9 (i.e., θx and θv if we use the Wasserstein
ambiguity sets, and θ2,x and θ2,v if we use the
moment-based ambiguity sets).

Remark: According to Theorem 5, θ1,x and θ1,v are
irrelevant to this algorithm, and therefore, not initialized.

Input: yk, k = 1, 2, 3, . . .
1: while true do
2: // Time-Update Step, i.e., Prior Estimation
3: Use (46) and (47) to obtain x̂k|k−1 andMk|k−1
4: // Obtain the Nominal Distributions
5: Use (45) to obtain P̄xk|Y k−1
6: P̄vk

← Nm(0,Rk)
7: // Obtain the Worst-Case Scenario
8: Use (42) or (43) to obtain imin

μ

9: Use (34) or (36) to obtain Σ∗x,k and Σ∗v,k
10: // Measurement-Update Step, i.e., Posterior Estimation
11: Use (48) and (49) to obtain x̂k|k and P ∗k|k
12: // Next Time Step
13: k ← k + 1
14: end while
Output x̂k|k

Proof: Compare with Theorem 6. �
The distributionally robust estimator to the linear Markov

system (3) is summarized in Algorithm 1.
The theorem below reveals relations among the proposed

distributionally robust estimator and the existing estimators.
Theorem 10: Concerning the distributionally robust state es-

timator in Algorithm 1, the follows are true.
1) If we set ε = 0, θx = θv = 0, θ1,x = θ2,x = 1, θ1,v =

θ2,v = 1, we obtain the canonical Kalman filter.
2) Under moment-based ambiguities, if we set ε = 0, θ2,x =

θ2,v , we obtain the fading Kalman filter [4], [5].
3) The Student’s t Kalman filter in [31, Eq. (13)] amounts to a

distributionally robust filter because it is a fading Kalman
filter whose fading factor is adaptively changeable.

4) Under moment-based ambiguities, if we set ε = 0, θ1,x =
θ2,x = 1, we obtain the robust Kalman filter in [61, Eq.
(32)] that has an adaptive θ2,v .

5) Under ε-contamination ambiguity, if we set θx = θv =
0, θ1,x = θ2,x = 1, θ1,v = θ2,v = 1, we obtain the M-
estimation-based Kalman filter [34, Thm. 3].

6) When there are no outliers and the special case discussed
in Theorem 8 is considered, if we use the Wasserstein
metric, we obtain the Wasserstein Kalman filter [28].

7) When there are no outliers and the special case discussed
in Theorem 8 is considered, if we use the KL divergence,
we obtain the relative-entropy Kalman filter [26].

8) When there are no outliers in measurements and the special
case discussed in Theorem 8 is considered, if we use the τ -
divergence, we obtain the τ -divergence Kalman filter [27].

9) The relative-entropy Kalman filter and the τ -divergence
Kalman filter are risk-sensitive Kalman filters [26], [27].
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Proof: In the case 1), all the ambiguity sets only con-
tain nominal distributions. Hence, we have Σ∗x,k =Mk|k−1,
Σ∗v,k = Rk, ψ(μ) = μ, and imin

μ = 1, leading to the canon-
ical Kalman filter. In the case 2), if we assume θ = θ2,x =
θ2,v , we have Σ∗x,k = θMk|k−1, Σ∗v,k = θRk, ψ(μ) = μ, and
imin
μ = 1, leading toP ∗k|k = θ · P k|k whereP k|k :=Mk|k−1 −
Mk|k−1HT

k (HkMk|k−1HT
k +Rk)

−1HkMk|k−1. By com-
paring with [5], we obtain the fading Kalman filter. For other
cases, compare with the given references. �

VI. COMPARISONS WITH EXISTING FRAMEWORKS

A. Frameworks Addressing Parameter Uncertainties

As a typical framework, we first review the unknown-input
filters below. In the unknown-input filters (e.g., [19]), the fol-
lowing linear system is studied{

xk = F k−1xk−1 + Γk−1dk−1 +Gk−1wk−1,
yk =Hkxk + vk,

(50)

wheredk−1 ∈ Rq is the unknown input describing the parameter
uncertainties (e.g.,F k−1 and/or the mean ofwk−1 are no longer
exact). In this case, the parameter uncertainties are limited within
the range space of Γk−1. Therefore, to guarantee satisfactory
performances, the structure and entries of Γk−1 need to be
carefully designed. A wrong choice of Γk−1 would, on the
contrary, lead to catastrophic results.

The next solutions are the robust state estimation methods.
Robust state estimation methods aim to make the filters in-
sensitive to parameter uncertainties. They robustify the filters
through minimizing the worst-case mean square error matrix
(a.k.a., upper bound of estimation error covariance [62], [63]),
although the uncertainties are described, structured, parameter-
ized, and bounded in different ways. Among existing literature,
two classic frameworks are remarkable. In [16], the following
perturbed linear system is studied{

xk = (F k−1 + δF k−1)xk−1 + (Gk−1 + δGk−1)wk−1,
yk =Hkxk + vk,

(51)
where δF k−1 and δGk−1 are parameter perturbations. They are
assumed to be additive and imposed on the nominal system
matrices F k−1 and Gk−1, respectively. Besides, δF k−1 and
δGk−1 are assumed to hold the following structure[

δF k−1 δGk−1
]
=Mk−1Δk−1

[
Ef,k−1 Eg,k−1

]
, (52)

where Δk−1 is an arbitrary contraction operator whose operator
norm is less than one.Mk−1,Ef,k−1, andEg,k−1 are structural
matrices to be carefully designed based on our reliable knowl-
edge about the uncertainties. Therefore, intuitively, the parame-
ters’ uncertainty space is expressed by limiting the matrix norms
of the system perturbation matrices δF k−1 and δGk−1. In [24],
another model about δF k−1 and δGk−1 is considered. In this
case, δF k−1 and δGk−1 are assumed to be linear combinations
of random variables, i.e.,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
δF k−1 =

l∑
i=1

F i,k−1 · ζi,k−1

δGk−1 =
l∑

i=1

Gi,k−1 · ζi,k−1,
(53)

where ζi,k−1 are random variables with assumed-known statis-
tics; l, F i,k−1, andGi,k−1 are assumed to be exactly known. In
this case, the second moment of the state vector are confined in
a convex and compact polytope and the worst-case estimation is
obtained over it. However, the final state estimation formulation
is a SDP which is challenging to solve.

As we can see, in order to describe the parameters’ uncertain-
ties, we must have reliable information about them so that we can
choose proper structures and entries of Γk−1, Mk−1, Ef,k−1,
Eg,k−1, F i,k−1, and Gi,k−1, and determine exact statistics of
ζi,k−1. For some specific problems, this is possible, while for
general ones, it is hard. This emphasizes the advantages of
the proposed distributionally robust state estimation framework,
which does not require the structural information of parameters’
uncertainties.

B. Frameworks Addressing Measurement Outliers

When we unexpectedly see outliers in a nominal outlier-
free population, we usually have two philosophies. The first
one is that we no longer believe the nominal population is
outlier-free. Instead, we take into account the outliers directly in
modelling and correct the nominal distribution into an outlier-
aware one. Typical solutions include: 1) direct modelling, e.g.,
t-distribution, Laplacian distribution; 2) indirect modelling, e.g.,
Bayesian methods (e.g., if the variance of a Gaussian distribu-
tion follows an inverse Gamma distribution, then the samples
from this variance-variant Gaussian distribution would follow
a t-distribution). The second one is that we still believe the
population is outlier-free and treat seen outliers as aggressors to
be cleared/modified. Typical solutions are reported, in particular,
by Frequentists, e.g., the jackknife method.

The two philosophies can also be understood by leveraging the
influence curve (a.k.a. influence function; see Appendix C) [38],
[39], [64]. Two kinds of influence curves are well-studied:

1) infinite-rejection-point influence curves, including all the
monotonic influence curves (e.g., Huber’s [43]) and some
re-descending influence curves that have infinite rejection
points (e.g., maximum-correntropy-criterion [37], [65]).

2) finite-rejection-point influence curves, including some
re-descending influence curves that have finite rejection
points (e.g., Hampel’s [38], [39], Tukey’s Biweight [39],
Andrew’s Sine [39], IGG [66]).

When we use infinite-rejection-point influence curves, we
implicitly accept outliers to be unstudied samples and correct
the nominal distribution to be heavy-tailed. For example, the
influence curve of an M-estimator at a t-distribution is a kind
of re-descending influence curve but it has infinite rejection-
point [33, Fig. 1]. Contrarily, when we adopt finite-rejection-
point influence curves, we actually admit finite support of the
nominal distribution and any sample outside of this support
would be treated as intruders and trashed.

Most of the existing state estimation frameworks under mea-
surement outliers belong to one of the two philosophies men-
tioned above. Note that in Bayesians, different from Frequen-
tists, influence curves are imposed on innovation vectors (i.e.,
difference between true measurement and predicted measure-
ment; cf. Theorem 6) rather than directly on measurement
vectors; see, e.g., [34]. Below lists and discusses some typically
existing outlier-insensitive state estimation frameworks.
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The earliest outlier-treatment method is the Gaussian-sum
filter [3], [30], which uses heavy-tailed distributions for mea-
surements, and the non-Gaussian heavy-tailed distributions are
approximated by Gaussian sums. The demerit of this method is
that it is computationally intensive and, thus, inefficient.

A remedy methodology to the Gaussian-sum filter is typically
the t-distribution Kalman filter [31], [32], [67], which no longer
uses a Gaussian sum to approximate the non-Gaussian measure-
ment noise. Instead, it directly uses heavy-tailed non-Gaussian
distributions such as the t-distribution, which explicitly explain
the outliers. An indirect modelling trick is the Bayesian frame-
work that assumes the noise statistics matrix (i.e.,R) is not exact
and follows an inverse Wishart distribution so that the mea-
surements y from the linear observation y =Hx+ v would
follow a multivariate t-distribution, which implicitly accounts
for outliers [33].

Another remedy methodology is directly working on design-
ing proper influence functions [37], [38], which is also known
as the weighted-least-square M-estimation-based Kalman fil-
ter [35], [36]. For details, see Appendix C. In this category,
the solutions for ψ(·) defined in Theorem 6 and Theorem 9 are
particularly popular. Other possible influence functions are the
maximum-correntropy-criterion (MCC) [65], IGG [66], Ham-
pel’s [38], [39], Tukey’s Biweight [39], Andrew’s Sine [39],
etc. However, note that they are derived from other motivations
and might no longer have clear perspectives of distributional
robustness.

VII. EXPERIMENTS

In this section, we compare the state estimation performances
of the existing filters and our newly proposed filter. All the
source data and codes are available online at GitHub: https:
//github.com/Spratm-Asleaf/DRSE-Outlier. Interested readers
can reproduce and/or verify the claims in this article via changing
the parameters or codes by themselves. Additional experiments
are placed in the online supplementary materials.

We continue studying the classical instance discussed in [16],
[26], [28], i.e.,

F real
k =

[
0.9802 0.0196 + α ·Δk

0 0.9802

]
,

Gk =

[
1 0
0 1

]
,Hk =

[
1 −1 ] ,

Qk =

[
1.9608 0.0195
0.0195 1.9605

]
,Rk =

[
1
]
,

where the random scalar Δk ∈ U := [−1, 1] denotes the real
perturbations imposed on the system and U defines its support;
α is a multiplicative coefficient. In this state estimation problem,
the nominal system matrix is known as

F k =

[
0.9802 0.0196

0 0.9802

]
.

Besides, we randomly add outliers for 5% measurements (i.e.,
we accordingly set ε = 0.05 in the proposed method).

A. Candidate Filters

We implement the following filters to compare.

1) TMKF: the canonical Kalman filter with the true model. In
the simulation we know the underlying true model F real

k
and the outlier-free true measurements. Therefore, this
method theoretically gives the best estimate of state in
the sense of minimum estimation error covariance;

2) KF: the canonical Kalman filter (with the nominal model
F k);

3) HKF: the outlier-insensitive Kalman filter based on the
Huber’s influence function [34], [37];

4) τ -KF: the τ -divergence Kalman filter [27];
5) WKF: the Wasserstein Kalman filter [28];
6) MKF: The moment-based distributionally robust state

estimator (see Theorem 9). We choose moment-based
ambiguity sets because under them the problem is easier
to solve (than that under Wasserstein ambiguity sets).

B. Parameters Setting

Algorithm 1 requires to initialize the parameters ε and θs. Note
that when ε is specified, K in (39), and a, b, and c in (40) will
be uniquely determined; see Lemmas 1 and 2 and their proofs.
Besides, if we use the Wasserstein ambiguity sets, we need to
initialize θx and θv [see (33)]. If we use the moment-based
ambiguity sets, we need to initialize θ2,x and θ2,v [see (37)]
(n.b., Algorithm 1 is irrelevant to θ1,x and θ1,v).

In all methods, we set the initial state estimate as x̂0|0 =

[0, 0]T and its corresponding estimation error covariance as
P ∗0|0 := diag{1, 1}, where diag{·} denotes a diagonal ma-
trix [16], [26], [28]. All parameters of each filter are directly
taken from the original paper or tuned to perform (nearly) best
for the studied instance when Δk randomly changes and α = 1.

In the Huber-based outlier-insensitive Kalman filter, we use
K = 1.4 [see (39)], because when ε is fixed to 0.05, K has to
be 1.4 [cf. (29)]. In the τ -divergence Kalman filter [27], we set
τ = 0 (i.e., the τ -divergence filter specifies the Kullback-Leibler
filter [26]), and the radius of the ambiguity set as 1.5× 10−4. In
the Wasserstein Kalman filter [28], the radius of the ambiguity
set is set to 0.1. In the moment-based distributionally robust filter,
we set θ2,x = θ2,v = 1.02, andK = 1.4. Namely, the influence
function in (39) is used.

Suppose each simulation episode runs T = 1000 discrete-
time steps. The overall estimation error of each episode is
measured by the rooted mean square error (RMSE) as√√√√ 1

T

T∑
k=1

[(x1,k − x̂1,k)2 + (x2,k − x̂2,k)2],

where x1,k (resp. x2,k) is the first (resp. second) component of
the state vector xk and x̂1,k (resp. x̂2,k) denotes its estimate.

C. Results

Results are obtained by a laptop with 8 G RAM and Intel(R)
Core(TM) i7-8850H CPU @ 2.60 GHz. We conduct the follow-
ing three experiments, respectively. First, let Δk randomly take
its value according to the uniform distribution from its supportU
at each step k, and let α = 1. However, in this simulation, we do
not add outliers in the measurements. The results are shown in
Table I. Second, letα = 0 (i.e., there are no parameter uncertain-
ties). Nevertheless, we add outliers for 5% measurements. The
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TABLE I
RESULTS WHEN α = 1 BUT NO OUTLIERS

Avg Time: Average Execution Time at each time step (seconds); 1e-5: 1× 10−5;
Note: TMKF gives theoretically optimal solution.

TABLE II
RESULTS WHEN α = 0 AND ONLY OUTLIERS

See Table I for table notes.

TABLE III
RESULTS WHEN α = 1 AND ALSO OUTLIERS

See Table I for table notes.

results are shown in Table II. Third, both parameter uncertainties
and measurement outliers are considered as above. The results
are shown in Table III.

From Tables I, II, and III, the following observations are
outlined. When there only exist parameter uncertainties, the τ -
divergence Kalman filter, the Wasserstein Kalman filter, and the
proposed moment-based distributionally robust state estimator
are relatively robust, while the Huber-based outlier-insensitive
Kalman filter is not. In addition, the proposed moment-based
distributionally robust state estimator is preferable since it is
computationally efficient. When there only exist measurement
outliers, the Huber-based outlier-insensitive Kalman filter is
roughly optimal as expected. However, the τ -divergence Kalman
filter and the Wasserstein Kalman filter perform badly, implying
that they are not robust against measurement outliers. When
both parameter uncertainties and measurement outliers exist,
the proposed moment-based distributionally robust state esti-
mator works better than other candidate filters; i.e., it is robust
against both parameter uncertainties and measurement outliers.
In Tables I and III, the performances of the proposed method
are far away from those of the TMKF because a relatively large
uncertainty coefficient α is used (i.e., the true system model is
far away from the nominal one). When α is set to be small, the
difference will reduce (cf. Table II). This reminds us that the
robust filters are just remedial, but not once-for-all, solutions.
In practice, continuing efforts need to be put on improving
the accuracy of the nominal model, unless the model accuracy
cannot be refined or robust solutions are satisfactory.

D. Sensitivity Analysis

In reality, it is hard to know the exact values of the true
proportion of outliers (i.e., ε), and the true uncertainty level of
the nominal model (i.e., θx, θv , θ2,x, and θ2,v). They cannot be
learned to be optimal either because for a real system, the true

Fig. 1. Sensitivity results over εreal and θ2.

Fig. 2. Breakdown test against εreal with and without model uncertainty.

state is unknown (i.e., training data set is unavailable). Hence, we
need to investigate whether the proposed algorithm is sensitive
to parameters ε and θs, and explore the prior knowledge of tuning
them for a real problem. Without loss of generality, we continue
using the instance discussed above, where the moment-based
ambiguity sets are adopted. As before, we set θ2,x and θ2,v to
be the same, and θ2,x = θ2,v := θ2.

First, we let α = 0 (i.e., no model uncertainty) and only study
the sensitivity against the true proportion of outliers. For the
case that we use the influence function in (39), we arbitrarily set
ε = 0.01 so that K = 2; for the case that we use the influence
function in (40), we let ε = 0.03 so thata = 1.3496, b = 1.3496,
and c = 1.2316. Then, we let the real proportion of outliers
εreal change from 0 to 0.5. We have the results in Fig. 1(a). It
shows that the proposed method is not sensitive to εreal. Thus,
it is safe in practice to keep the values of ε, K, a, b, and c
recommended above regardless of εreal. (Other values are also
viable; readers can validate this claim using the shared source
codes themselves.) Besides, we show the breakdown properties
of all the candidate filters. The results are shown in Fig. 2. We
see that the HKF is better than the MKF when there are no model
uncertainties [cf. Fig. 2(a)], whereas the HKF is worse than the
MKF when there exist model uncertainties [cf. Fig. 2(b)]. This
is because the MKF is the robustified version of the HKF against
model uncertainties (n.b., the MKF reduces to the HKF when
θ2 := 0). Therefore, the price of the robustness in uncertain
conditions (when α 	= 0) is sacrificing the optimality in perfect
conditions (when α = 0).

Second, we fix εreal = 0.05 and study the sensitivity against
the true degree of the model uncertainty. We let α = 1, and θ2
change from 1 to 1.1. We have the results in Fig. 1(b). It shows
that the performance of the proposed method depends heavily on
the value of θ2. If θ2 is too small, the algorithm has no sufficient
robustness against the uncertainty. Contrarily, if θ2 is too large,
the algorithm is too conservative to obtain a good performance as
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well. Therefore, one should carefully (and pragmatically) tune
this parameter to achieve good performances for their specific
real problems.

VIII. CONCLUSION

This article proposes the distributionally robust state estima-
tion method that can account for both parameter uncertainties
and measurement outliers. It offers a new perspective to under-
stand the robust state estimation problem under parameter uncer-
tainties and measurement outliers and generalizes several classic
methods into a unified framework. It uses only a few scalars
to describe parameter uncertainties and measurement outliers
and does not require structural information of uncertainties,
especially useful when we have limited trust towards the nominal
model and scarce knowledge about the uncertainties. Exper-
iments show that the proposed method under moment-based
ambiguity sets outperforms existing methods, which is not hard
to expect because none of them is designed to simultaneously
address both parameter uncertainties and measurement outliers.
Although the method might be insensitive to the true proportion
of outliers (i.e., the value of ε used in the algorithm does
not significantly matter), it is sensitive to the true uncertainty
level of the nominal model (i.e., the values of θs used in the
algorithm significantly matter). Practitioners have to carefully
try appropriate θs for their specific problems (n.b., θs cannot
be learned because the true state is unavailable). At last, two
closing remarks need to be outlined. 1) Robust filters are just
remedial solutions. Reducing modelling uncertainties is always
important. Readers should not expect that the proposed method
is optimal or satisfactory in all scenarios, e.g., for a model with
t-distributed measurement noises (which implies that the true
model is known). 2) The robustness under uncertain conditions
comes with the cost of sacrificing the optimality under perfect
conditions.

APPENDIX A
PROOF OF THEOREM 1

The conditional mean x̂ = [p(y)]−1
∫
xp(y|x)p(x)dx−

x̄+ x̄ = [p(y)]−1
∫
(x− x̄)p(y|x)p(x)dx+ x̄ = [p(y)]−1M∫

pv(y −Hx)M−1(x− x̄)p(x)dx+ x̄. Due to the prior

distribution of x is Gaussian, −M−1(x− x̄)p(x) = dp(x)
dx ,

giving x̂ = x̄−M [p(y)]−1
∫
pv(y −Hx)dp(x)dx dx. By

partial integration, we have x̂ = x̄+M [p(y)]−1
∫ ∂pv(y−Hx)

∂x

p(x)dx = x̄−MHT [p(y)]−1
∫ ∂pv(y−Hx)

∂y p(x)dx = x̄−
MHT [p(y)]−1

∫ ∂p(x,y)
∂y dx = x̄−MHT [p(y)]−1 dp(y)

dy =

x̄+MHT [−d lnp(y)
dy ]. Furthermore, the conditional

covariance of the estimation error is P x|y = Ex|y(x̂− x)
(· · · )T = Ex|y(x̄− x)(· · · )T − Ex|y(x̂− x̄)(· · · )T =M −
MHT [−d lnp(y)

dy ][· · · ]THM . Since μ = S−1/2(y −Hx̄),
we have pμ(μ) = py(S

1/2μ+Hx̄) · det[d(S1/2μ+Hx̄)
dμ ] =

py(S
1/2μ+Hx̄) · det(S1/2). As a result, −d lnp(μ)

dμ =

−d lnpy(S
1/2μ+Hx̄)
dμ = −S1/2 d lnpy(y)

dy , implying −d lnpy(y)
dy

= S−1/2[−d lnp(μ)
dμ ]. Similarly, we can show that

[−d lnpy(y)
dy ][· · · ]T = S−1/2[−d lnp(μ)

dμ ][· · · ]TS−1/2. Com-
bining the derivations above, we finish the proof. �

APPENDIX B
PROOF OF COROLLARY 1

By noting that E{[p(μ)]−1 d2p(μ)
dμμT } =∫

[p(μ)]−1 d2p(μ)
dμμT p(μ)dμ =

d2
∫
p(μ)dμ

dμμT = d21
dμμT = 0,

we have E[−d2 lnp(μ)
dμμT ] = −E{[p(μ)]−1 d2p(μ)

dμμT }+
E{[p(μ)]−2[−dp(μ)

dμ ][· · · ]T } = E[−d lnp(μ)
dμ ][· · · ]T . �

APPENDIX C
SOME STATISTICAL CONCEPTS

Suppose the density of interest p(μ; θ) is parameterized by
unknown mean θ. For mean estimation (a.k.a. location esti-
mation) problems, in general, p(μ; θ) := p(μ− θ); recall, e.g.,
the Gaussian distribution. Strictly speaking, the score func-
tion is defined with respect to the unknown parameter θ as
d
dθ ln p(μ; θ). Since d

dθ ln p(μ; θ) = − d
dμ ln p(μ; θ), in statistics,

some authors also directly define the score function with respect
to μ as − d

dμ ln p(μ; θ). As a result, the Fisher information

has two equivalent definitions as well: E[− d2

dθ2 ln p(μ; θ)] and

E[− d2

dμ2 ln p(μ; θ)].
In statistics, the three concepts, score function, influence

function, and weight function, are closely related but different.
Score function is well-known in maximum likelihood estima-
tion, influence function in general (outlier-) robust statistics [38],
[39, Chap. 3], and weight function in (outlier-) robust linear
regression [35], [36], [68], [39, Chap. 7]. Influence function is
a property of an estimator designed for a distribution, while
score function is that of the distribution itself. However, in M-
estimation, influence function is just a multiple of score function
and the constant multiplier is the Fisher information associated
with the distribution. Let Tθ(Pμ) be the M-estimator of the
mean of the distribution Pμ whose density is p(μ). Supposing a
score function is given by ψ(μ) := − d

dμ ln p(μ), the influence
function IF (μ) equals to [38]

IF (μ) := lim
ε↓0

Tθ[(1− ε)Pμ + εΔμ]− Tθ[Pμ]

ε

=
ψ(μ)

− ∫
ψ′(μ)p(μ)dμ

,

where Δμ is a point mass distribution concentrated at μ, ψ′(·) is
the derivative ofψ(·), and the denominator is the Fisher informa-
tion. In particular, if the Fisher information of the distribution
is unit (e.g., standard Gaussian), the score function coincides
with the influence function. For this reason, in M-estimation
contexts, practitioners first derive score function and then equate
it to influence function because a score function is mathemat-
ically easier to obtain. On the other hand, the weight function
in (outlier-) robust linear regression is defined by ψ(μ)/μ. In
statistical theory the three concepts are distinguished because
they have different backgrounds, meanings, and definitions, but
in signal processing practice we consider them to be equivalent
(in the sense that one uniquely implies another) because they
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have similar mathematical forms. With this implication in mind,
it is not confusing that the score functionψ(·) shown in Theorem
6 and Theorem 9 is directly termed as “influence function” in
literature such as [33], [34], [40], [69]. This is more intuitively
understandable for signal processing practitioners because ψ(·)
limits the “influence” that a (contaminated) measurement yk

may bring.
In M-estimation contexts, when we mention to design an

influence function, we mean to design the score function ψ(·)
[38]. Besides, when we design a weight function in robust linear
regression contexts, we also uniquely obtain the corresponding
score function in M-estimation counterpart [37]. The score func-
tion, in turn, implicitly determines the distribution for the studied
population (which includes both ordinary points and outliers);
p(μ) ∝ exp [− ∫ μ

−∞ ψ(μ)dμ] because ψ(μ) = − d
dμ ln p(μ).

APPENDIX D
PROOF OF LEMMA 1

See [43, pp. 80] for the solution of p(μ). As a result,
minE[− d2

dμ2 ln p(μ)] =
∫K

−K p(μ)dt = (1− ε) ∫K

−K dΦ(t) =

(1− ε)[1− 2Φ(−K)]. For any given ε, the value of K can be
found in [43, Table I] or [39, Exhibit 4.3]. �

APPENDIX E
PROOF OF LEMMA 2

See [43, pp. 91] for the solution of p(μ). As a
result, minE[− d2

dμ2 ln p(μ)] = 2× [
∫ a

0
1
2

c2

cos2( 1
2 cμ)

p(μ)dμ+∫ b

a p(μ)dμ] = 2[ 12
c2

cos2( 1
2 ca)

p(a)
∫ a

0 dμ+
∫ b

a dΦ(μ)]. For any

given 0 ≤ ε � 0.0303, the values of a, b, and c can be found
in [43, Table II] or [39, Exhibit 4.6]. �

APPENDIX F
PROOF OF THEOREM 4

The squared constraint Tr[Σx +M − 2(M
1
2ΣxM

1
2 )

1
2 ] ≤

θ2x is convex and compact, so is the squared constraint for v (as
R � 0) [53]. Therefore, the following equivalent feasible set is
convex and also compact.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tr

[
Σx +M − 2

(
M

1
2ΣxM

1
2

) 1
2

]
≤ θ2x

Tr

[
Σv +R− 2

(
R

1
2ΣvR

1
2

) 1
2

]
≤ θ2v

Σx � 0
Σv � 0.

(54)

Due to Σv � 0, the existence of the inverse in the objective
function (32) is guaranteed. As the trace of the objective (32)
is continuous, smooth (i.e., differentiable), and joint concave in
terms of Σx and Σv , the dual problem (32) subject to (33) is
solvable (i.e., the optimal solutions exist and are finite).

In order to simplify the objective function, let U �
ΣxH

T (HΣxH
T +Σv)

−1HΣx � 0. By Schur comple-
ment, it is equivalent to require[

U ΣxH
T

HΣx HΣxH
T +Σv

]
� 0.

In order to simplify the constraints, let V x �
(M

1
2ΣxM

1
2 )

1
2 , i.e., V 2

x �M
1
2ΣxM

1
2 . By Schur

complement, it is equivalent to require[
M

1
2ΣxM

1
2 V x

V x I

]
� 0.

Likewise, let V v � (R
1
2ΣvR

1
2 )

1
2 , i.e., V 2

v � R
1
2ΣvR

1
2 . By

Schur complement, it is equivalent to require[
R

1
2ΣvR

1
2 V v

V x I

]
� 0.

Note thatM
1
2ΣxM

1
2 � 0 andR

1
2ΣvR

1
2 � 0. �

APPENDIX G
PROOF OF THEOREM 5

In order to simplify the objective function, let U � Σx −
ΣxH

T (HΣxH
T +Σv)

−1HΣx · imin
μ . By Schur comple-

ment, the dual problem (36) subject to (37) is equivalent to

max
Σx,Σv,U

U ,

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(Σx −U)/imin

μ ΣxH
T

HΣx HΣxH
T +Σv

]
� 0

U � 0
Σx � θ2,xM
Σx � θ1,xM
Σv � θ2,vR
Σv � θ1,vR � 0
Σx � 0
Σv � 0.

Namely,[
U/imin

μ 0
0 0

]
�

[
Σx/i

min
μ ΣxH

T

HΣx HΣxH
T +Σv

]
.

Since I � 0 and I/imin
μ −H(HTH)−1HT � I −

H(HTH)−1HT � 0, by Schur complement, we have

dTr

[
Σx/i

min
μ ΣxH

T

HΣx HΣxH
T +Σv

]
dΣx

=

[
I/imin

μ H
HT HTH

]
� 0,

and

dTr

[
Σx/i

min
μ ΣxH

T

HΣx HΣxH
T +Σv

]
dΣv

=

[
0 0
0 I

]
� 0,

implying the upper bound of

[
Σx/i

min
μ ΣxH

T

HΣx HΣxH
T +Σv

]
is reached by the upper bounds of Σx and Σv . Note that
H(HTH)−1HT is an idempotent matrix (a.k.a. projection
matrix in linear regression) whose eigenvalues only contain
zeros and ones (therefore, I −H(HTH)−1HT � 0).
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As a result,[
U/imin

μ 0
0 0

]
�[

θ2,xM/imin
μ θ2,xMHT

Hθ2,xM Hθ2,xMHT + θ2,vR

]
,

giving[
(θ2,xM −U)/imin

μ θ2,xMHT

Hθ2,xM Hθ2,xMHT + θ2,vR

]
� 0.

Therefore, the upper bound of U is

θ2,xM − θ22,xMHT (Hθ2,xMHT + θ2,vR)−1HM · imin
μ ,

reached by Σx = θ2,xM and Σv = θ2,vR. �

APPENDIX H
PROOF OF THEOREM 6

By noting that ψ(·) := − d
dμ ln p(μ) and recalling (29) and

(30) in the worst case, Eqs. (39) and (40) are immediate. For the
worst-case distribution of v, it is not simplyNm(c∗v,Σ

∗
v) where

c∗v = 0 because we have v = S
1
2μ−H(x− x̄). From High-

light 1, the distribution of v suffers from two types of deviations,
i.e., outlier-related and outlier-unrelated.Nm(c∗v,Σ

∗
v) is just the

worst-case distribution for the outlier-unrelated part. The inte-
grated worst-case distribution of v is determined by the convolu-
tion of P ∗μ(μ) and P ∗x(x) through v∗ = S∗

1
2μ∗ −H(x∗ − x̄).

It is non-trivial to explicitly compute this convolution. However,
fortunately, we do not need to pursue its exact expression (or
numerical value). The other statements are straightforward from
Lemmas 1, 2 and Theorems 1, 2, 3, 4, 5. �

APPENDIX I
PROOF OF THEOREM 7

The weak duality admits

max
P(x,y)∈F′′

min
φ(·)∈H′y

V (φ,P ) � min
φ(·)∈H′y

max
P(x,y)∈F′′

V (φ,P ).

Supposing the estimator φ∗ and the worst case distribution P ∗

solve the dual problem which are available from Theorem 6,
we haveV (φ∗,P ∗) � min

φ(·)∈H′y
max

P(x,y)∈F′′
V (φ,P ).On the other

hand,

min
φ(·)∈H′y

max
P(x,y)∈F′′

V (φ,P ) � max
P(x,y)∈F′′

V (φ∗,P ).

Since P ∗ maximizes the right hand side (see Theorem 6),

min
φ(·)∈H′y

max
P(x,y)∈F′′

V (φ,P ) � V (φ∗,P ∗).

As a result,

min
φ(·)∈H′y

max
P(x,y)∈F′′

V (φ,P ) = V (φ∗,P ∗).

This shows the min-max property, i.e., strong duality, complet-
ing the proof. �

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960,
doi: 10.1115/1.3662552..

[2] D. Simon, Optimal State Estimation: Kalman, H�, and Nonlinear Ap-
proaches. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006.

[3] G. Chen, Approximate Kalman Filtering. Singapore: World Scientific
Publishing Company, 1993.

[4] T. J. Tarn and J. Zaborszky, “A practical nondiverging filter,” AIAA J.,
vol. 8, no. 6, pp. 1127–1133, 1970.

[5] G. Gawrys and V. Vandelinde, “Divergence and the fading memory fil-
ter,” in Proc. IEEE Conf. Decis. Control Including 14th Symp. Adaptive
Processes, 1975, pp. 66–68.

[6] B. Hassibi, A. H. Sayed, and T. Kailath, “Linear estimation in Krein spaces.
II. applications,” IEEE Trans. Autom. Control, vol. 41, no. 1, pp. 34–49,
Jan. 1996.

[7] Y. S. Shmaliy, F. Lehmann, S. Zhao, and C. K. Ahn, “Comparing robust-
ness of the Kalman, H∞, and UFIR filters,” IEEE Trans. Signal Process.,
vol. 66, no. 13, pp. 3447–3458, Jul. 2018.

[8] J. Speyer, J. Deyst, and D. Jacobson, “Optimization of stochastic linear
systems with additive measurement and process noise using exponential
performance criteria,” IEEE Trans. Autom. Control, vol. AC-19, no. 4,
pp. 358–366, Aug. 1974.

[9] D. Bertsekas and I. Rhodes, “Recursive state estimation for a set-
membership description of uncertainty,” IEEE Trans. Autom. Control,
vol. AC-16, no. 2, pp. 117–128, Apr. 1971.

[10] X. Shen and L. Deng, “Game theory approach to discrete H∞ filter
design,” IEEE Trans. Signal Process., vol. 45, no. 4, pp. 1092–1095, Apr.
1997.

[11] R. Mehra, “On the identification of variances and adaptive Kalman fil-
tering,” IEEE Trans. Autom. Control, vol. AC-15, no. 2, pp. 175–184,
Apr. 1970.

[12] A. Mohamed and K. Schwarz, “Adaptive Kalman filtering for INS/GPS,”
J. Geodesy, vol. 73, no. 4, pp. 193–203, 1999.

[13] Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, “A novel adaptive
Kalman filter with inaccurate process and measurement noise covariance
matrices,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 594–601,
Feb. 2018.

[14] Y. Huang, Y. Zhang, P. Shi, and J. Chambers, “Variational adaptive Kalman
filter with Gaussian-inverse-Wishart mixture distribution,” IEEE Trans.
Autom. Control, vol. 66, no. 4, pp. 1786–1793, Apr. 2021.

[15] I. R. Petersen and A. V. Savkin, Robust Kalman Filtering for Signals and
Systems With Large Uncertainties. New York, NY, USA: Springer Science
& Business Media, 1999.

[16] A. H. Sayed, “A framework for state-space estimation with uncertain
models,” IEEE Trans. Autom. Control, vol. 46, no. 7, pp. 998–1013,
Jul. 2001.

[17] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple
model methods in target tracking: A survey,” IEEE Trans. Aerosp. Electron.
Syst., vol. 34, no. 1, pp. 103–123, Jan. 1998.

[18] Y. Ma, S. Zhao, and B. Huang, “Multiple-model state estimation based
on variational Bayesian inference,” IEEE Trans. Autom. Control, vol. 64,
no. 4, pp. 1679–1685, Apr. 2019.

[19] S. Gillijns and B. De Moor, “Unbiased minimum-variance input and state
estimation for linear discrete-time systems,” Automatica, vol. 43, no. 1,
pp. 111–116, 2007.

[20] J. George, “A robust estimator for stochastic systems under unknown
persistent excitation,” Automatica, vol. 63, pp. 156–161, 2016.

[21] S. Z. Yong, M. Zhu, and E. Frazzoli, “A unified filter for simultaneous
input and state estimation of linear discrete-time stochastic systems,”
Automatica, vol. 63, pp. 321–329, 2016.

[22] S. Wang, C. Li, and A. Lim, “Optimal joint estimation and identification
theorem to linear Gaussian system with unknown inputs,” Signal Process.,
vol. 161, pp. 268–288, 2019.

[23] U. Shaked, L. Xie, and Y. C. Soh, “New approaches to robust minimum
variance filter design,” IEEE Trans. Signal Process., vol. 49, no. 11,
pp. 2620–2629, Nov. 2001.

[24] F. Wang and V. Balakrishnan, “Robust Kalman filters for linear time-
varying systems with stochastic parametric uncertainties,” IEEE Trans.
Signal Process., vol. 50, no. 4, pp. 803–813, Apr. 2002.

[25] W. Liu and P. Shi, “Convergence of optimal linear estimator with multi-
plicative and time-correlated additive measurement noises,” IEEE Trans.
Autom. Control, vol. 64, no. 5, pp. 2190–2197, May 2019.

[26] B. C. Levy and R. Nikoukhah, “Robust state space filtering under incre-
mental model perturbations subject to a relative entropy tolerance,” IEEE
Trans. Autom. Control, vol. 58, no. 3, pp. 682–695, Mar. 2013.

[27] M. Zorzi, “Robust Kalman filtering under model perturbations,” IEEE
Trans. Autom. Control, vol. 62, no. 6, pp. 2902–2907, Jun. 2017.

[28] S. S. Abadeh, V. A. Nguyen, D. Kuhn, and P. M. M. Esfahani, “Wasserstein
distributionally robust Kalman filtering,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 8474–8483.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 22,2022 at 02:48:43 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1115/1.3662552.


WANG AND YE: DISTRIBUTIONALLY ROBUST STATE ESTIMATION FOR LINEAR SYSTEMS SUBJECT TO UNCERTAINTY AND OUTLIER 467

[29] S. Wang, Z. Wu, and A. Lim, “Robust state estimation for linear systems
under distributional uncertainty,” IEEE Trans. Signal Process., vol. 69,
pp. 5963–5978, Oct. 2021, doi: 10.1109/TSP.2021.3118540.

[30] H. W. Sorenson and D. L. Alspach, “Recursive Bayesian estimation using
Gaussian sums,” Automatica, vol. 7, no. 4, pp. 465–479, 1971.

[31] Y. Huang, Y. Zhang, N. Li, Z. Wu, and J. A. Chambers, “A novel robust
student’s t-based Kalman filter,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 53, no. 3, pp. 1545–1554, Jun. 2017.

[32] Y. Huang, Y. Zhang, Y. Zhao, and J. A. Chambers, “A novel
robust Gaussian-student’s t mixture distribution based Kalman fil-
ter,” IEEE Trans. Signal Process., vol. 67, no. 13, pp. 3606–3620,
Jul. 2019.

[33] G. Agamennoni, J. I. Nieto, and E. M. Nebot, “Approximate inference in
state-space models with heavy-tailed noise,” IEEE Trans. Signal Process.,
vol. 60, no. 10, pp. 5024–5037, Oct. 2012.

[34] C. Masreliez and R. Martin, “Robust Bayesian estimation for the linear
model and robustifying the Kalman filter,” IEEE Trans. Autom. Control,
vol. 22, no. 3, pp. 361–371, Jun. 1977.

[35] Z. M. Durovic and B. D. Kovacevic, “Robust estimation with un-
known noise statistics,” IEEE Trans. Autom. Control, vol. 44, no. 6,
pp. 1292–1296, Jun. 1999.

[36] M. A. Gandhi and L. Mili, “Robust Kalman filter based on a general-
ized maximum-likelihood-type estimator,” IEEE Trans. Signal Process.,
vol. 58, no. 5, pp. 2509–2520, May 2010.

[37] L. Chang and K. Li, “Unified form for the robust Gaussian information
filtering based on M-estimate,” IEEE Signal Process. Lett., vol. 24, no. 4,
pp. 412–416, Apr. 2017.

[38] F. R. Hampel, “The influence curve and its role in robust estimation,” J.
Amer. Stat. Assoc., vol. 69, no. 346, pp. 383–393, 1974.

[39] P. J. Huber, Robust Statistics, 2nd ed. Hoboken, NJ, USA: Wiley, 2009.
[40] V. Stojanovic, S. He, and B. Zhang, “State and parameter joint estimation

of linear stochastic systems in presence of faults and non-Gaussian noises,”
Int. J. Robust Nonlinear Control, vol. 30, no. 16, pp. 6683–6700, 2020.

[41] D. A. Blackwell and M. A. Girshick, Theory of Games and Statistical
Decisions. New York, NY, USA: Wiley, 1954.

[42] H. Scarf, “A min max solution of an inventory problem,” in Studies in the
Mathematical Theory of Inventory and Production. Stanford, CA, USA:
Stanford Univ. Press, 1958.

[43] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math.
Statist., vol. 35, no. 1, pp. 73–101, 1964.

[44] D. Bertsimas, M. Sim, and M. Zhang, “Adaptive distributionally robust
optimization,” Manage. Sci., vol. 65, no. 2, pp. 604–618, 2019.

[45] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A.
A. Bharath, “Generative adversarial networks: An overview,” IEEE Signal
Process. Mag., vol. 35, no. 1, pp. 53–65, Jan. 2018.

[46] M. Staib and S. Jegelka, “Distributionally robust optimization and gener-
alization in kernel methods,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 9134–9144.

[47] I. Yang, “A dynamic game approach to distributionally robust safety
specifications for stochastic systems,” Automatica, vol. 94, pp. 94–101,
2018.

[48] D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh,
“Wasserstein distributionally robust optimization: Theory and applications
in machine learning,” INFORMS Tut. Operations Res., pp. 130–166, 2019,
doi: 10.1287/educ.2019.0198.

[49] A. Ben-Tal, D. D. Hertog, A. D. Waegenaere, B. Melenberg, and G.
Rennen, “Robust solutions of optimization problems affected by uncertain
probabilities,” Manage. Sci., vol. 59, no. 2, pp. 341–357, 2013.

[50] E. Delage and Y. Ye, “Distributionally robust optimization under moment
uncertainty with application to data-driven problems,” Operations Res.,
vol. 58, no. 3, pp. 595–612, 2010.

[51] B. D. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1979.

[52] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Upper Saddle
River, NJ, USA: Prentice Hall, 2000.

[53] V. A. Nguyen, S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani,
“Bridging Bayesian and minimax mean square error estimation via
Wasserstein distributionally robust optimization,” Math. Operations Res.,
2021, doi: 10.1287/moor.2021.1176..

[54] B. Hassibi, A. H. Sayed, and T. Kailath, “Linear estimation in Krein
spaces. I. Theory,” IEEE Trans. Autom. Control, vol. 41, no. 1, pp. 18–33,
Jan. 1996.

[55] X. Shen and P. K. Varshney, “Sensor selection based on generalized
information gain for target tracking in large sensor networks,” IEEE Trans.
Signal Process., vol. 62, no. 2, pp. 363–375, Jan. 2014.

[56] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans.
Autom. Control, vol. 54, no. 6, pp. 1254–1269, Jun. 2009.

[57] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proc. IEEE Adaptive Syst. Signal Process.,
Commun., Control Symp. (Cat. No. 00EX373), 2000, pp. 153–158.

[58] K. Kim and G. Shevlyakov, “Why gaussianity?,” IEEE Signal Process.
Mag., vol. 25, no. 2, pp. 102–113, Mar. 2008.

[59] S. N. Diggavi and T. M. Cover, “The worst additive noise under a covari-
ance constraint,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 3072–3081,
Nov. 2001.

[60] D. Guo, Y. Wu, S. S. Shitz, and S. Verdú, “Estimation in Gaussian noise:
Properties of the minimum mean-square error,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 2371–2385, Apr. 2011.

[61] Z. Li, Y. Yao, J. Wang, and J. Gao, “Application of improved robust Kalman
filter in data fusion for PPP/INS tightly coupled positioning system,”
Metrol. Meas. Syst., vol. 24, no. 2, pp. 289–301, 2017.

[62] L. Xie, Y. C. Soh, and C. E. DeSouza, “Robust Kalman filtering for
uncertain discrete-time systems,” IEEE Trans. Autom. Control, vol. 39,
no. 6, pp. 1310–1314, Jun. 1994.

[63] Y. Liang, D. Zhou, L. Zhang, and Q. Pan, “Adaptive filtering for stochastic
systems with generalized disturbance inputs,” IEEE Signal Process. Lett.,
vol. 15, pp. 645–648, Oct. 2008, doi: 10.1109/LSP.2008.2002707.

[64] F. Hampel, “Contributions to the theory of robust estimation,” Ph.D.
dissertation, Univ. California, Berkeley, Sep. 1968.

[65] B. Chen, X. Liu, H. Zhao, and J. C. Principe, “Maximum correntropy
Kalman filter,” Automatica, vol. 76, pp. 70–77, 2017.

[66] Y. Yuanxi, “Robust estimation for dependent observations,” Manuscripta
Geodaetica, vol. 19, no. 1, pp. 10–17, 1994.

[67] L. Sun, W. K. Ho, K. V. Ling, T. Chen, and J. Maciejowski, “Recursive
maximum likelihood estimation with t-distribution noise model,” Auto-
matica, vol. 132, 2021, Art. no. 109789.

[68] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma, “Robust
estimation in signal processing: A tutorial-style treatment of fundamental
concepts,” IEEE Signal Process. Mag., vol. 29, no. 4, pp. 61–80, Jul. 2012.

[69] S. Wang, Z. Wu, and A. Lim, “Denoising, outlier/dropout correction, and
sensor selection in range-based positioning,” IEEE Trans. Instrum. Meas.,
vol. 70, pp. 1–13, 2021, Art. no. 1007613.

Shixiong Wang (Student Member, IEEE) received
the B.Eng. degree in detection, guidance and control
technology, and the M.Eng. degree in systems and
control engineering from the School of Electronics
and Information, Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2016 and 2018, respectively. He
is currently working toward the Ph.D. degree with
the Department of Industrial Systems Engineering
and Management, National University of Singapore,
Singapore.

His research interests include statistics and opti-
mization theories with applications in signal processing (especially optimal
estimation theory) and control technology.

Zhi-Sheng Ye (Senior Member, IEEE) received the
joint B.E. degree in material science and engineering
and economics from Tsinghua University, Beijing,
China, in 2008, and the Ph.D. degree in industrial and
systems engineering from the National University of
Singapore, Singapore, in 2012.

He is currently an Associate Professor in industrial
engineering with the Department of Industrial Sys-
tems Engineering and Management, National Uni-
versity of Singapore. His research interests include
reliability engineering, complex systems modeling,

and industrial statistics.
Prof. Ye is an Associate Editor for the IEEE TRANSACTIONS ON RELIABILITY

and the IISE Transactions.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 22,2022 at 02:48:43 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TSP.2021.3118540
https://dx.doi.org/10.1287/educ.2019.0198
https://dx.doi.org/10.1287/moor.2021.1176.
https://dx.doi.org/10.1109/LSP.2008.2002707


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


